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Abstract We consider invertible discrete-time dynamical systems having a hyperbolic
product structure in some region of the phase space with infinitely many branches and vari-
able return time. We show that the decay of correlations of the SRB measure associated to
that hyperbolic structure is related to the tail of the recurrence times. We also give sufficient
conditions for the validity of the Central Limit Theorem. This extends previous results by
Young in (Ann. Math. 147: 585–650, 1998; Israel J. Math. 110: 153–188, 1999).
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1 Introduction

One of the most powerful ways of describing the dynamical features of chaotic dynamical
systems is through invariant probability measures, meaning that the probability of finding
an orbit in a certain region of the phase space does not depend on the moment we consider.
A map f is said to be mixing with respect to an invariant probability measure μ if

|μ(f −n(A) ∩ B) − μ(A)μ(B)| → 0, when n → ∞,

for any measurable sets A,B . Standard counterexamples show that in general there is no
specific rate at which this convergence to zero occurs. However, defining the correlation
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function of observables ϕ,ψ : M → R,

Cn(ϕ,ψ;μ) =
∣
∣
∣
∣

∫

(ϕ ◦ f n)ψdμ −
∫

ϕdμ

∫

ψdμ

∣
∣
∣
∣
,

it is sometimes possible to obtain specific rates of decay, which depend only on the map f

(up to a multiplicative constant which is allowed to depend on ϕ and ψ ), provided the
observables ϕ and ψ have sufficient regularity. Notice that choosing these observables
to be characteristic functions this gives exactly the definition of mixing. Still in this di-
rection, the Central Limit Theorem states that the probability of a given deviation of the
time average values from the spatial average is essentially given by a Normal Distribu-
tion.

Since the work of Bowen, Ruelle and Sinai [3, 7, 8] it is known that uniformly hyperbolic
diffeomorphisms (Axiom A, Anosov) possess SRB (or physical) measures with exponential
decay of correlations and satisfying the Central Limit Theorem. A key ingredient in the
results of Sinai, Ruelle and Bowen are Markov partitions, which permit to deduce many
statistical properties of the dynamical system through a codification of the dynamics.

In the context of non-uniformly hyperbolic diffeomorphisms, Young considered in [10]
some Markov structures, in certain regions of the phase space, with infinitely many branches
and variable return times. This structures played a key role in obtaining exponential decay
of correlations and deduce the Central Limit Theorem for some classes of non-uniformly
hyperbolic diffeomorphisms, including billiards with convex scatterers and Axiom A attrac-
tors. Still in this context we refer the work of Benedicks and Young in [2] where they also get
exponential decay of correlations and deduce the Central Limit Theorem for Hénon maps.
This approach has also been successfully implemented by Young in [11] for studying other
rates of mixing of non-invertible dynamical systems.

The framework developed by Young in [10, 11] is certainly among the most powerful
tools for studying the statistical properties of non-uniformly hyperbolic dynamical systems.
In both approaches, there is an explicit relation between the tail of the recurrence times
to the hyperbolic structure and the decay of correlations, at least for some specific rates.
However, the results in both papers do not depict the whole scenario: on the one hand, the
model in [10] can only be applied to systems whose decay of correlations is exponential; on
the other hand, the model in [11], in spite of being suitable for other decay rates, is specific
to non-invertible systems. A simple diffeomorphism as the solenoid with intermittency that
we present in Sect. 2.4 does not fit the model in [10]; see Remark 2.4.

A reduction of the diffeomorphism case to an endomorphism has been successfully im-
plemented in [10] for systems with exponential decay of return time. This reduction has not
been carried out for other decays. Here we mix techniques from [10, 11] and fill in this gap.
Hyperbolic structures with subexponential tail of recurrence times will certainly play an im-
portant role in obtaining the rates of mixing for the diffeomorphisms introduced by Viana
in [9]. Such hyperbolic structures can also be useful in the study of some classes of billiards
and Poincaré return maps for flows, for which the tails of recurrence frequently decay at
subexponential rates.

Overview This work is organized in the following way. In Sect. 2 we present our main
results. For that we present the hyperbolic structures that appeared in [2, 10] and introduce
a diameter control on certain iterates of the elements in the hyperbolic structures. This di-
ameter control plays a crucial role in our subexponential results. In Sect. 3 we consider an
induced scheme with a tower extension and reduce the problem to the non-invertible case.
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For this we need a careful control on the constants of the main results in [11]; we do this in
Appendix A for the sake of completeness. We derive the results for the original dynamics
in Sect. 4. Finally, a solenoid with intermittency is presented as an illustrating example in
Sect. 5.

2 Statement of Results

2.1 Hyperbolic Structures

Consider f : M → M , where M is a finite-dimensional Riemannian manifold, and let Leb
be the Lebesgue measure on the Borel sets of M . Given a submanifold γ ⊂ M we use Lebγ

to denote the measure on γ induced by the restriction of the Riemannian structure to γ .
An embedded disk γ ⊂ M is called an unstable manifold if dist(f −n(x), f −n(y)) → 0

exponentially fast as n → ∞ for every x, y ∈ γ . Similarly, γ is called a stable manifold if
dist(f n(x), f n(y)) → 0 exponentially fast as n → ∞ for every x, y ∈ γ .

Definition 2.1 Let Emb1(Du,M) be the space of C1 embeddings from a disk Du into M .
We say that �u = {γ u} is a continuous family of C1 unstable manifolds if there is a compact
set Ks , a unit disk Du of some R

n, and a map �u : Ks × Du → M such that

(i) γ u = �u({x} × Du) is an unstable manifold;
(ii) �u maps Ks × Du homeomorphically onto its image;

(iii) x �→ �u | ({x} × Du) defines a continuous map from Ks into Emb1(Du,M).

Continuous families of C1 stable manifolds are defined similarly.

Definition 2.2 We say that � ⊂ M has a hyperbolic product structure if there exist a con-
tinuous family of unstable manifolds �u = {γ u} and a continuous family of stable manifolds
�s = {γ s} such that

(i) � = (
⋃

γ u) ∩ (
⋃

γ s);
(ii) dimγ u + dimγ s = dimM ;

(iii) each γ s meets each γ u in exactly one point;
(iv) stable and unstable manifolds are transversal with angles bounded away from 0.

Let � ⊂ M have a hyperbolic product structure, whose defining families are �s and �u.
A subset �0 ⊂ � is called an s-subset if �0 also has a hyperbolic product structure and its
defining families �s

0 and �u
0 can be chosen with �s

0 ⊂ �s and �u
0 = �u; u-subsets are defined

analogously. Given x ∈ �, let γ ∗(x) denote the element of �∗ containing x, for ∗ = s, u. For
each n ≥ 1 let (f n)u denote the restriction of the map f n to γ u-disks, and let detD(f n)u be
the Jacobian of D(f n)u. We require that the hyperbolic product structure � satisfies several
properties:

(P1) Markov: there are pairwise disjoint s-subsets �1,�2, . . . ⊂ � such that

(a) Lebγ ((� \ ⋃
�i) ∩ γ ) = 0 on each γ ∈ �u;

(b) for each i ∈ N there is Ri ∈ N such that f Ri (�i) is u-subset, and for all x ∈ �i

f Ri (γ s(x)) ⊂ γ s(f Ri (x)) and f Ri (γ u(x)) ⊃ γ u(f Ri (x)).
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In the statements of the remaining properties about the hyperbolic structure we assume
that C > 0 and 0 < β < 1 are constants which only depend on f and �.

(P2) Contraction on stable leaves: dist(f n(y), f n(x)) ≤ Cβn, ∀y ∈ γ s(x) ∀n ≥ 1.

In spite of the uniform contraction in the stable direction, this condition is not too re-
strictive in systems having regions where the contraction fails to be uniform, since we are
allowed to remove points in the unstable leaves, provided a subset with positive measure in
those leaves remains at the end. This has been carried out in [2] for Hénon maps.

Next we introduce a return time function R : � → N and a return map f R : � → �,
defined for each i ∈ N as

R|�i
= Ri and f R|�i

= f Ri |�i
.

We consider the separation time s(x, y) for x, y ∈ � as

s(x, y) = min
{

n ≥ 0 : (f R)n(x) and (f R)n(y) lie in distinct �i

}

.

The last two properties involve information on the action of f R on unstable leaves.

(P3) Regularity of the stable foliation: given γ, γ ′ ∈ �u, we define 	 : γ ′ ∩ � → γ ∩ � by
	(x) = γ s(x) ∩ γ . Then

(a) 	 is absolutely continuous and

d(	∗ Lebγ ′)

d Lebγ

(x) =
∞
∏

i=0

detDf u(f i(x))

detDf u(f i(	−1(x)))
;

(b) letting u(x) denote the density in item (a), we have

log
u(x)

u(y)
≤ Cβs(x,y), for x, y ∈ γ ′ ∩ �.

(P4) Bounded distortion: for γ ∈ �u and x, y ∈ � ∩ γ

log
detD(f R)u(x)

detD(f R)u(y)
≤ Cβs(f R(x),f R(y)).

Remark 2.3 The Markov property we present here is weaker than the one in [10], since
includes two extra assumptions: (i) there are at most finitely many i’s with Ri = n for each
n ∈ N; (ii) Ri ≥ R0 for some R0 > 1 depending on the constants C and α. These assumptions
play a role in showing the existence of a spectral gap for a transfer operator associated to the
dynamics. Here we use a more probabilistic argument, based on [11], which enables us to
drop those extra assumptions. In particular, we are able to reobtain the conclusions of [10]
under our weaker Markov condition.

Remark 2.4 We do not assume any uniform backward contraction along unstable leaves
similar to (P4) (a) in [10]. This would be too restrictive for our purposes, since the applica-
tion we make of our main results does not have this property. Properties (P3)(b) and (P4) are
new if comparing our setup to the one in [10]. However, they can be easily obtained from
(P4) and (P5) in [10]; see [10, Lemma 1].
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2.2 Diameter Control

Consider a sequence of stopping times defined for the points in � in the following way:

S0 = 0, S1 = R and Si+1 = Si + R ◦ f Si , for i ≥ 1. (1)

We also define a nested sequence (Pk)k≥0 of partitions of �. Let P0 be the partition of �

into the subsets �i . Given k ≥ 1, we say that x and y belong to an element of Pk , if both
conditions hold:

(i) f R(x) and f R(y) have the same stopping times S1 < · · · < Sj up to time k − 1;
(ii) f Si (f R(x)) and f Si (f R(y)) belong to the same element of P0 for each 0 ≤ i ≤ j .

By construction we have that Sj+1(f
R(x)) = Sj+1(f

R(y)) ≥ k and f Sj+1(f R(Q)) is a
u-subset.

We shall need to have a control on the diameter of certain iterates of the elements in
the partitions defined above; see the proof of Lemma 3.2. Take any k ≥ 1 and P ∈ P0. We
consider separately the cases where k is bigger than R(P ) − 1 or not. If k > R(P ) − 1, then
we define

δk(P ) = sup
0≤�≤R(P )−1

{

diam(f �(Q ∩ γ )) : γ ∈ �u,Q ∈ Pk−R(P )+1+�,Q ⊂ P
}

.

On the other hand, if k ≤ R(P ) − 1, then we define the quantities

δ0
k (P ) = sup

0≤�<R(P )−k

{

diam(f �(P ∩ γ )) : γ ∈ �u
}

,

δ+
k (P ) = sup

R(P )−k≤�≤R(P )−1

{

diam(f �(Q ∩ γ )) : γ ∈ �u,Q ∈ Pk−R(P )+1+�,Q ⊂ P
}

,

and

δk(P ) = sup{δ0
k (P ), δ+

k (P )}.
Finally we define

δk = sup
P∈P0

δk(P ). (2)

Though the definition of δk might seem somewhat technical, this is not so hard to cal-
culate in practice, at least for some examples. One we have in mind is the solenoid with
intermittency that we present in Sect. 2.4, for which we show in Sect. 5.2 that δk decays
polynomially fast with k.

Remark 2.5 The argument in Sect. 5.2 can easily be adapted to show that δk decays expo-
nentially fast with k, once we know that the diameter of the elements �i decay exponentially
fast with Ri . This includes all the examples studied in [10], since property (P4)(a) in [10]
gives the exponential decay for the diameters of the elements in the initial partition with
respect to the return time.

Remark 2.6 In the light of Definition 2.6 in [1] one may say that δk decays exponentially
fast with k whenever the return time Ri is a hyperbolic time for the points in �i with respect
to the derivative restricted to the tangent direction of the leaves in �u; see [1, Lemma 2.7]
and recall Remark 2.5.



510 J.F. Alves, V. Pinheiro

2.3 Main Results

The first result we present here asserts the existence of SRB measures for systems having
some hyperbolic structure, provided the return time is integrable with respect to the condi-
tional of the Lebesgue measure on some local unstable leaf.

Definition 2.7 We say that an f -invariant probability measure μ is a Sinai-Ruelle-Bowen
(SRB) measure if f has no zero Lyapunov exponents μ almost everywhere, and the condi-
tional measures on local unstable manifolds are absolutely continuous with respect to the
Lebesgue measures on these manifolds.

The proof of the next result is quite standard and may be found in [10].

Theorem A Assume that f has a hyperbolic structure � such that Lebγ (� ∩ γ ) > 0 for
some γ ∈ �u. If R is integrable with respect to Lebγ , then f has some SRB measure μ.

The next result shows that the decay of correlations of the SRB measure μ given by The-
orem A is related to the recurrence times of the hyperbolic structure. It has been established
by Young in [10, Theorem 2] a version of this result for hyperbolic structures having ex-
ponential decay of return time. The method in [10] is based on the existence of a spectral
gap for the transfer operator and cannot be applied in our situation. We define the space of
Hölder continuous functions with exponent η > 0

Hη = {

ϕ : M → R | ∃C > 0 such that |ϕ(x) − ϕ(y)| ≤ C dist(x, y)η,∀x, y ∈ M
}

.

Theorem B Assume that f has a hyperbolic structure � for which (P1)–(P4) hold, with
gcd{Ri} = 1 and Lebγ (� ∩ γ ) > 0 for some γ ∈ �u. Given ϕ,ψ ∈ Hη ,

(1) if Lebγ {R > n} � n−α for some α > 1, then Cn(ϕ,ψ;μ) � max{n−α+1, δη
n};

(2) if Lebγ {R > n} � e−cnζ
for some c > 0 and 0 < ζ ≤ 1, then there exists c′ > 0 such that

Cn(ϕ,ψ;μ) � max{e−c′nζ
, δη

n}.

As shown in [10, Sect. 4.1], condition gcd{Ri} = 1 can be replaced by the assumption
that f n is ergodic with respect to μ for every n ≥ 1. If we omit both assumptions, then
the same conclusion holds for some power of f . The next result gives the Central Limit
Theorem for Hölder continuous observables which are not a coboundary with respect to the
SRB measure μ.

Theorem C Under the assumptions of Theorem B, if Lebγ {R > n} � n−α for some α > 2,
then given ϕ ∈ Hη for which there is no ψ ∈ L2(μ) with ϕ = ψ ◦ f − ψ there exists σ > 0
such that for every interval J ⊂ R,

μ

{

x ∈ M : 1√
n

n−1
∑

j=0

(

ϕ(f j (x)) −
∫

ϕdμ

)

∈ J

}

n→∞−→ 1

σ
√

2π

∫

J

e−t2/2σ 2
dt.

2.4 Application

We give a diffeomorphism for which we may apply our main results and deduce that it has
an SRB measure with polynomial decay of correlations. This is obtained by perturbing the
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classical solenoid map in the unstable direction of one fixed point and transforming it into
an indifferent fixed point. Let f : S1 → S1 be a map of degree d ≥ 2 with the following
properties:

(i) f is C2 on S1 \ {0};
(ii) f is C1 on S1 and f ′ > 1 on S1 \ {0};

(iii) f (0) = 0, f ′(0) = 1, and there is γ > 0 such that

−xf ′′(x) ≈ |x|γ for all x �= 0.

Consider the solid torus M = S1 × D2, where D2 is the unit disk in R
2, and define the map

g : M → M by

g(x, y, z) =
(

f (x),
1

10
y + 1

2
cosx,

1

10
z + 1

2
sinx

)

.

Let Hη be the space of Hölder continuous functions on M with exponent η > 0.

Theorem D Let g : M → M be as above and take ϕ,ψ ∈ Hη .

(1) The map g admits an SRB measure μ if and only if γ < 1.
(2) Assume that γ < 1. Then

(a) for η ≥ 1 − γ we have Dn(ϕ,ψ;μ) � n1−1/γ ;
(b) for η < 1 − γ we have Dn(ϕ,ψ;μ) � n−η/γ .

(3) If γ < 1/2, then the Central Limit Theorem holds for ϕ ∈ Hη , provided there is no
ψ ∈ L2(μ) with ϕ = ψ ◦ f − ψ .

It is well known that for γ ≥ 1 one has 1
n

∑n−1
j=0 δf j (x) converging in the weak* topology

to the Dirac measure at 0 for Lebesgue almost every x ∈ S1; see for example [5, 6]. Using
the fact that we have uniform contraction in the vertical direction, it is not hard to see that
1
n

∑n−1
j=0 δgj (x,y) converges in the weak* topology to the Dirac measure at 0 for Lebesgue

almost every (x, y) ∈ S1 × D2. This observation justifies the “only if” part of the theorem
above.

3 Induced Schemes

Here we consider an induced scheme with a tower extension and reduce the problem to a
non-invertible case. We follow closely the approach in [10].

3.1 The Natural Measure

Fix an arbitrary γ̂ ∈ �u. Given γ ∈ �u and x ∈ γ ∩ � let x̂ be the point in γ s(x) ∩ γ̂ .
Defining for x ∈ γ ∩ �

û(x) =
∞
∏

i=0

detDf u(f i(x))

detDf u(f i(x̂))

we have that û satisfies the bounded distortion property (P3)(b). For each γ ∈ �u let mγ be
the measure in γ such that

dmγ

d Lebγ

= û1γ∩�,
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where 1γ∩� is the characteristic function of the set γ ∩ �. These measures have been defined
in such a way that if γ, γ ′ ∈ �u and 	 is obtained by sliding along stable leaves from γ ∩ �

to γ ′ ∩ �, then

	∗mγ = mγ ′ . (3)

To verify this let us show that the densities of these two measures with respect to Lebγ

coincide. Take x ∈ γ ∩ � and x ′ ∈ γ ′ ∩ � such that 	(x) = x ′. By (P3)(a) one has

d	∗ Lebγ

d Lebγ ′
(x ′) = û(x ′)

û(x)
,

which implies that

d	∗mγ

d Lebγ ′
(x ′) = û(x)

d	∗ Lebγ

d Lebγ ′
(x ′) = û(x ′) = dmγ ′

d Lebγ ′
(x ′).

Lemma 3.1 Assuming that f R(γ ∩�) ⊂ γ ′ for γ, γ ′ ∈ �u, let Jf R(x) denote the Jacobian
of f R with respect to the measures mγ and mγ ′ . Then

(1) Jf R(x) = Jf R(y) for every y ∈ γ s(x);
(2) there is C1 > 0 such that for every x, y ∈ � ∩ γ

∣
∣
∣
∣

Jf R(x)

Jf R(y)
− 1

∣
∣
∣
∣
≤ C1β

s(f R(x),f R(y)).

Proof (1) For Lebγ almost every x ∈ γ ∩ � we have

Jf R(x) = ∣
∣detD(f R)u(x)

∣
∣ · û(f R(x))

û(x)
. (4)

Denoting ϕ(x) = log |detDf u(x)| we may write

logJf R(x) =
R−1
∑

i=0

ϕ(f i(x)) +
∞

∑

i=0

(

ϕ
(

f i(f R(x))
) − ϕ

(

f i(f̂ R(x))
))

−
∞

∑

i=0

(

ϕ(f i(x)) − ϕ(f i(x̂))
)

=
R−1
∑

i=0

ϕ(f i(x̂)) +
∞

∑

i=0

(

ϕ
(

f i(f R(x̂))
) − ϕ

(

f i(f̂ R(x))
))

.

Thus we have shown that Jf R(x) can be expressed just in terms of x̂ and f̂ R(x), which is
enough for proving the first part of the lemma.

(2) It follows from (4) that

log
Jf R(x)

Jf R(y)
= log

detD(f R)u(x)

detD(f R)u(y)
+ log

û(f R(x))

û(f R(y))
+ log

û(y)

û(x)
.

Observing that s(x, y) > s(f R(x), f R(y)) the conclusion follows from (P3)(b) and (P4). �
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3.2 A Tower Extension

We introduce a tower extension of the dynamical system f restricted to
⋃

n≥0 f n(�); note
that this space is preserved by f . We define a tower

� = {

(x, �) : x ∈ � and 0 ≤ � < R(x)
}

,

and a tower map F : � → � as

F(x, �) =
{

(x, � + 1), if � + 1 < R(x);

(f R(x),0), if � + 1 = R(x).

The �th level of the tower is by definition the set

�� = {(x, �) ∈ �}.

The 0th-level of the tower �0 is naturally identified with � and we shall make no distinction
between them. Under this identification it easily follows from the definitions that FR = f R

for each x ∈ �0. Note that the �th level of the tower is a copy of the set {R > �} ⊂ �0.
Also, we easily obtain a partition P of �0 into subsets �0,i , with �0,i = �i for i ≥ 1. This
partition gives rise to partitions ��,i on each tower level �, considering

��,i = {(x, �) ∈ �� : x ∈ �0,i}.

Collecting all these sets we obtain a partition Q = {��,i}�,i of �. We introduce a sequence
of partitions (Qn)n≥0 of � in the following way:

Q0 = Q, and Qn =
n

∨

i=0

F−iQ for n ≥ 0. (5)

We shall denote by Qn(x) the element in Qn containing the point x ∈ �.
We define a projection map

π : � −→
⋃

n≥0

f n(�0),

(6)
(x, �) �−→ f �(x).

Observe that f ◦ π = π ◦ F.

Lemma 3.2 There is C2 > 0 such that for all k ≥ 0 and Q ∈ Q2k

diam(πF k(Q)) ≤ C2 max{βk, δk}.

Proof Take k ≥ 0 and Q ∈ Q2k . Given x, y ∈ Q, there is z ∈ γ u(x) ∩ γ s(y). Supposing that
Q ⊂ ��, then y0 = πF−�(y) and z0 = πF−�(z) are both in �0 and they lie on the same
stable leaf. Hence
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dist(πF k(y),πF k(z)) = dist(πF k+�(y0),πF k+�(z0))

= dist(f k+�(πy0),πf k+�(πz0)).

Using (P2) we get

dist(πF k(y),πF k(z)) ≤ Cβk+�. (7)

On the other hand, we have Fk(Q) ∈ Qk , which implies that Fk(x) and Fk(z) are both
in an unstable leaf of some element of Qk . In particular, there are P ∈ P0 and � < R(P )

such that element of Qk is in the �-th level of the tower over P . Moreover, the situations
considered for defining δk(P ) correspond precisely to the possible cases for the elements of
Qk over P . Taking into account the definition of π , this gives

dist(πF k(x),πF k(z)) ≤ δk(P ),

which together with (7) gives the desired conclusion. �

Let m be the measure on � whose conditional measures on γ ∩ � with γ ∈ �u are the
measures mγ introduced in the previous section. This measure m allows us to introduce a
measure on � that we still denote m, by letting m|�� be the measure induced by the natural
identification of �� with a subset of �. We let JF denote the Jacobian of F with respect to
this measure m.

Lemma 3.3 There is CF > 0 such that for all k ≥ 1 and all x, y ∈ � belonging to a same
element of Qk−1

∣
∣
∣
∣

JF k(x)

JF k(y)
− 1

∣
∣
∣
∣
≤ CF βs(Fk(x),F k(y)).

Proof By Lemma 3.1 one knows that for all i ≥ 1 and all x, y ∈ �0,i

∣
∣
∣
∣

JF R(x)

JFR(y)
− 1

∣
∣
∣
∣
≤ C1β

s(FR(x),FR(y)). (8)

It follows that there is a constant CF > 0 such that for all n ≥ 1 and all x, y belonging to a
same element of ∨n−1

j=0(F
R)−jP

∣
∣
∣
∣

J (FR)n(x)

J (FR)n(y)
− 1

∣
∣
∣
∣
≤ CF βs((FR)n(x),(FR)n(y)). (9)

In fact, if x and y belong to a same element of ∨n−1
j=0(F

R)−jP , then (FR)j (x) and (FR)j (y)

belong to a same element of P for every 0 ≤ j < n. Moreover,

s
(

(FR)j (x), (FR)j (y)
) = s

(

(FR)n(x), (FR)n(y)
) + (n − j). (10)

Then

log
J (FR)n(x)

J (FR)n(y)
=

n−1
∑

j=0

log
JFR((FR)j (x))

JFR((FR)j (y))
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≤
n−1
∑

j=0

C1β
s((FR)n(x),(FR)n(y))+(n−j)−1, by (8) and (10)

≤ CF βs((FR)n(x),(FR)n(y)), (11)

where CF > 0 depends only on C1 and β . This implies that (9) holds.
From (9) we easily deduce that for all k ≥ 1 and all x, y ∈ � belonging to a same element

of Qk−1

∣
∣
∣
∣

JF k(x)

JF k(y)
− 1

∣
∣
∣
∣
≤ CF βs(Fk(x),F k(y)). (12)

To see this, we consider JF k(x) = J (FR)n(x ′) and JF k(y) = J (FR)n(y ′), where n is the
number of visits of x and y to �0 prior to time k, and x ′, y ′ are the elements in the bottom
level �0 corresponding x, y, respectively. In this way, we have x ′, y ′ belonging to a same
element of

∨n−1
j=0(F

R)−jP and s(x, y) = s(x ′, y ′). Using (9) we obtain (12). �

3.3 Quotient Dynamics

Let �̄ = �/ ∼, where x ∼ y if and only if y ∈ γ s(x). This quotient space gives rise to a
quotient tower �̄ with levels �̄� = ��/ ∼. A partition of �̄ into �̄0,i , that we denote by P̄ ,
and a sequence Q̄n of partitions of �̄ as in (5) are defined in a natural way.

As f R takes γ s -leaves to γ s -leaves and R has been defined in such a way that it does
not depend on the point we take in a same stable leaf, we may assume that we have de-
fined the return time R̄ : �̄0 → N, the tower map F̄ : �̄ → �̄ and the separation time
s̄ : �̄0 × �̄0 → N naturally induced by the corresponding ones in �0 and �. It will be con-
venient to have this separation time defined in the whole �̄. This may be done by taking
s̄(x, y) = s̄(x ′, y ′) if x and y belong in a same �̄l,i , where x ′, y ′ are the corresponding
elements of �̄0,i , and s̄(x, y) = 0 otherwise.

Since (3) holds, we may introduce a measure m̄ on �̄ whose representative on each
γ ∈ �u is mγ . We let J F̄ denote the Jacobian of F̄ with respect to this measure m̄. The
first item of Lemma 3.1 shows that the Jacobian J F̄ is well defined with respect to m̄. From
Lemma 3.3 we easily obtain:

Lemma 3.4 For all k ≥ 1 and all x, y ∈ �̄ belonging to a same element of Q̄k−1

∣
∣
∣
∣

J F̄ k(x)

J F̄ k(y)
− 1

∣
∣
∣
∣
≤ CF βs̄(F̄ k(x),F̄ k(y)).

It will be useful to consider R̂ : �̄ −→ N defined as

R̂(x) = min{n ≥ 0 : F̄ n(x) ∈ �̄0}.
Note that R̂(x) = R̄(x) for all x ∈ �̄0, and

m̄{R̂ > n} =
∑

l>n

m̄(�̄l) =
∑

l>n

m̄{R̄ > l}.

We introduce the spaces of Hölder functions in �̄

Fβ ={

ϕ : �̄ → R | ∃Cϕ > 0 such that |ϕ(x) − ϕ(y)| ≤ Cϕβ
s̄(x,y) for all x, y ∈ �̄

}
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F+
β =

{

ϕ ∈ Fβ | ∃Cϕ > 0 such that on each �̄�,i , either ϕ ≡ 0, or

ϕ > 0 and

∣
∣
∣
∣

ϕ(x)

ϕ(y)
− 1

∣
∣
∣
∣
≤ Cϕβ

s̄(x,y) for all x, y ∈ �̄�,i

}

.

The following result gives the existence of an equilibrium measure for the tower map and
some of its properties. A proof of it is given in [10, Lemma 2] and [11, Theorem 1].

Theorem 3.5 Assume that R̄ is integrable with respect to m̄. Then

(1) F̄ has a unique absolutely continuous invariant probability ν̄ equivalent to m̄;
(2) dν̄/dm̄ belongs to F+

β and is bounded from below by some c > 0;
(3) (F̄ , ν̄) is exact and, hence ergodic and mixing.

The decay of correlations for the measure ν̄ has been proved in [10]. This occurs at the
same speed that the positive iterates under F̄∗ of measures with densities in F+

β converge
to the equilibrium ν̄. This speed is related to the decay of m̄{R̄ > n}, at least for some
specific rates.

Theorem 3.6 For ϕ ∈ F+
β let λ̄ be the measure whose density with respect to m̄ is ϕ.

(1) If m̄{R̄ > n} ≤ Cn−ζ , for some C > 0 and ζ > 1, then there is C ′ > 0 such that

∣
∣F̄ n

∗ λ̄ − ν̄
∣
∣ ≤ C ′n−ζ+1.

(2) If m̄{R̄ > n} ≤ Ce−cnη
, for some C,c > 0 and 0 < η ≤ 1, then there are C ′, c′ > 0 such

that
∣
∣F̄ n

∗ λ̄ − ν̄
∣
∣ ≤ C ′e−c′nη

.

Moreover, c′ does not depend on ϕ and C ′ depends only on Cϕ .

A version of this theorem has been proved in [10, Theorem 2] but without establishing
the dependence on the constants. This plays a crucial role in our proofs of Theorem B and
Theorem C. Following the arguments in [10] we give a detailed proof of Theorem 3.6 in
Appendix A.

4 Back to the Original Dynamics

Let π be the map from � to M defined in (6). Let also π̄ be the projection from � to the
quotient space �̄. As observed in [10, Sects. 2 and 4] we have ν̄ = π̄∗ν and μ = π∗ν. Given
ϕ,ψ ∈ Hη we define ψ̃ = ψ ◦ π and ϕ̃ = ϕ ◦ π .

4.1 Decay of Correlations

For proving Theorem B we start by noting that for ϕ,ψ ∈ Hη we have

∫

(ϕ ◦ f n)ψdμ −
∫

ϕdμ

∫

ψdμ =
∫

(ϕ̃ ◦ Fn)ψ̃dν −
∫

ϕ̃dν

∫

ψ̃dν,
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which shows that it suffices to obtain the desired conclusions for Cn(ϕ̃, ψ̃;ν). This will be
done in several steps, firstly reducing it to a problem in �̄ and then applying Theorem 3.6.

Step 1 Fix some positive integer k ≤ n/4. Consider a discretization ϕ̄k of ϕ̃ defined on �

(or �̄) as

ϕ̄k|A = inf{ϕ̃ ◦ Fk(x) : x ∈ A}, for A ∈ Q2k .

We have

|Cn(ϕ̃, ψ̃;ν) − Cn−k(ϕ̄k, ψ̃;ν)| ≤ C3δ
η

k (13)

for some C3 depending only on Cϕ and ‖ψ‖∞.
Actually, by Lemma 3.2 one knows that |ϕ̃ ◦ Fk − ϕ̄k| ≤ Cϕ(C2δk)

η . To be precise, one
should consider the case βk > δk , but this would only be relevant in the second part of
Theorem B. However, it does not play any special role for the conclusion.

Observing that Cn(ϕ̃, ψ̃;ν) = Cn−k(ϕ̃ ◦ Fk, ψ̃;ν), the left-hand side of inequality (13) is

≤
∣
∣
∣
∣

∫

(ϕ̃ ◦ Fk − ϕ̄k) ◦ Fn−k · ψ̃dν

∣
∣
∣
∣
+

∣
∣
∣
∣

∫

(ϕ̃ ◦ Fk − ϕ̄k)dν ·
∫

ψ̃dν

∣
∣
∣
∣

≤ 2Cϕ(C2δk)
η‖ψ‖∞.

We just have to take C3 = 2CϕC
η

2 ‖ψ‖∞.

Step 2 Consider ψ̄k defined similarly to ϕ̄k above. Let ψ̄kν denote the signed measure whose
density with respect to ν is ψ̄k , and let ψ̃k denote the density of Fk∗ (ψ̄kν) with respect to ν.
Then

|Cn−k(ϕ̄k, ψ̃;ν) − Cn−k(ϕ̄k, ψ̃k;ν)| ≤ C4δ
η

k , (14)

for some C4 depending only on Cψ and ‖ϕ‖∞.
In fact, the left-hand side of (14) is

≤
∣
∣
∣
∣

∫

(ϕ̄k ◦ Fn−k)(ψ̃ − ψ̃k)dν

∣
∣
∣
∣
+

∣
∣
∣
∣

∫

ϕ̄kdν

∫

(ψ̃ − ψ̃k)dν

∣
∣
∣
∣

≤ 2‖ϕ‖∞ ·
∣
∣
∣
∣

∫

(ψ̃ − ψ̃k)dν

∣
∣
∣
∣
.

Letting | · | denote the total variation of a signed measure, and noting that

Fk
∗ ((ψ̃ ◦ Fk)ν) = ψ̃ν,

we have
∣
∣
∣
∣

∫

(ψ̃ − ψ̃k)dν

∣
∣
∣
∣
= |ψ̃ν − ψ̃kν| = |Fk

∗ ((ψ̃ ◦ Fk)ν) − Fk
∗ (ψ̄kν)|

≤ |(ψ̃ ◦ Fk − ψ̄k)ν| =
∫

|ψ̃ ◦ Fk − ψ̄k|dν.

By Lemma 3.2 one has |ψ̃ ◦ Fk − ψ̄k| ≤ Cψ(C2δk)
η . Take C4 = 2CψC

η

2 ‖ϕ‖∞.

Step 3 Now we show that

Cn−k(ϕ̄k, ψ̃k;ν) = Cn(ϕ̄k, ψ̄k; ν̄). (15)
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Indeed,
∫

(ϕ̄k ◦ Fn−k)ψ̃kdν =
∫

ϕ̄kd(F n−k
∗ (ψ̃kν)) =

∫

ϕ̄kd(F n
∗ (ψ̄kν)),

and since ϕ̄k is constant on γ s leaves and F and F̄ are semi-conjugated by π̄ , we have

∫

ϕ̄kd(F n
∗ (ψ̄kν)) =

∫

ϕ̄kd(π̄∗Fn
∗ (ψ̄kν)) =

∫

ϕ̄kd(F̄ n
∗ (ψ̄kν̄)) =

∫

(ϕ̄k ◦ Fn)ψ̄kdν̄.

Thus we have proved that

∫

(ϕ̄k ◦ Fn−k)ψ̃kdν =
∫

(ϕ̄k ◦ Fn)ψ̄kdν̄.

On the other hand,
∫

ϕ̄kdν ·
∫

ψ̃kdν =
∫

ϕ̄kdν̄ ·
∫

d(F k
∗ (ψ̄kν)) =

∫

ϕ̄kdν̄ ·
∫

ψ̄kdν̄.

These last to formulas give precisely (15).

Step 4 With no loss of generality we assume that ψ̄k is not the null function. Taking

bk =
(∫

(ψ̄k + 2‖ψ̄k‖∞)dν̄

)−1

and ψ̂k = bk(ψ̄k + 2‖ψ̄k‖∞),

we then have
∫

ψ̂kρ̄dm̄ = 1, where ρ̄ = dν̄

dm̄
.

Moreover,

1

3‖ψ̄k‖∞
≤ bk ≤ 1

‖ψ̄k‖∞
and 1 ≤ ‖ψ̂k‖∞ ≤ 3.

Observe that ψ̂k is constant on elements of Q2k , since ψ̄k has this property. Let λ̂k be the
probability measure on �̄ whose density with respect to m̄ is ψ̂kρ̄. Then,

∣
∣
∣
∣

∫

(ϕ̄k ◦ F̄ n)ψ̄kdν̄ −
∫

ϕ̄kdν̄

∫

ψ̄kdν̄

∣
∣
∣
∣
= 1

bk

∣
∣
∣
∣

∫

(ϕ̄k ◦ F̄ n)ψ̂kdν̄ −
∫

ϕ̄kdν̄

∫

ψ̂kdν̄

∣
∣
∣
∣

≤ 1

bk

∫

|ϕ̄k| .
∣
∣
∣
∣

d(F̄ n∗ λ̂k)

dm̄
− ρ̄

∣
∣
∣
∣
dm̄. (16)

Letting λ̄k = F̄ 2k∗ λ̂k , we have

d

dm̄
F̄ n

∗ λ̂k = d

dm̄
F̄ n−2k

∗ λ̄k,

which together with (16) gives

Cn(ϕ̄k, ψ̄k; ν̄) ≤ 1

bk

‖ϕ̄k‖∞
∣
∣F̄ n−2k

∗ λ̄k − ν̄
∣
∣ ≤ 3‖ψ‖∞‖ϕ‖∞

∣
∣F̄ n−2k

∗ λ̄k − ν̄
∣
∣ .
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Let φk represent the density of the measure λ̄k with respect to m̄. The next lemma shows
that φk ∈ F+

β , with the constant Cφk
not depending on φk . This is enough for using Theo-

rem 3.6 and conclude the proof of Theorem B; recall that we have taken k ≤ n/4.

Lemma 4.1 There is C > 0, not depending on φk , such that

|φk(x̄) − φk(ȳ)| ≤ Cβs̄(x̄,ȳ), for all x̄, ȳ ∈ �̄.

Proof Since F̄ 2k∗ ν̄ = ν̄ and ρ̄ = dν̄/dm̄, we may write

ρ̄(x̄) =
∑

Q∈Q̄2k

ρ̄((F̄ 2k|Q)−1(x̄))

J F̄ 2k((F̄ 2k|Q)−1(x̄))
. (17)

Recall that we have by definition

φk = dλ̄k

dm
= d

dm̄
F̄ 2k

∗ λ̂k and
dλ̂k

dm
= ψ̂kρ̄.

Since ψ̂k is constant on elements of Q2k , we have

φk(x̄) =
∑

Q∈Q̄2k

cQ

ρ̄((F̄ 2k|Q)−1(x̄))

J F̄ 2k((F̄ 2k|Q)−1(x̄))
,

where cQ is constant on each Q ∈ Q̄2k . Hence,

φk(x̄) − φk(ȳ) =
∑

Q∈Q̄2k

cQ

(
ρ̄((F̄ 2k|Q)−1(x̄))

J F̄ 2k((F̄ 2k|Q)−1(x̄))
− ρ̄((F̄ 2k|Q)−1(ȳ))

J F̄ 2k((F̄ 2k|Q)−1(ȳ))

)

. (18)

Fixing Q ∈ Q̄2k , let x̄ ′, ȳ ′,∈ Q be such F̄ 2k(x̄ ′) = x̄ and F̄ 2k(x̄ ′) = x̄. We have

ρ̄(x̄ ′)
J F̄ 2k(x̄ ′)

− ρ̄(ȳ ′)
J F̄ 2k(ȳ ′)

=
(

ρ̄(ȳ ′)
J F̄ 2k(ȳ ′)

)(
ρ̄(x̄ ′)
ρ̄(ȳ ′)

J F̄ 2k(ȳ ′)
J F̄ 2k(x̄ ′)

− 1

)

. (19)

It follows from Theorem 3.5 that there is Cρ̄ > 0 such that

log

∣
∣
∣
∣

ρ̄(x̄ ′)
ρ̄(ȳ ′)

∣
∣
∣
∣
≤ Cρ̄β

s(x̄′,ȳ′).

On the other hand, by Lemma 3.4 there is CF̄ > 0 such that

log

∣
∣
∣
∣

J F̄ 2k(ȳ ′)
J F̄ 2k(x̄ ′)

∣
∣
∣
∣
≤ CF̄ βs̄(F̄ 2k(x̄′),F 2k (ȳ′)).

Since s(x̄ ′, ȳ ′) ≥ s(F̄ 2k(x̄ ′),F 2k(ȳ ′)) = s(x̄, ȳ), we have

log

∣
∣
∣
∣

ρ̄(x̄ ′)
ρ̄(ȳ ′)

J F̄ 2k(ȳ ′)
J F̄ 2k(x̄ ′)

∣
∣
∣
∣
≤ (Cρ̄ + CF̄ )βs̄(x̄,ȳ). (20)
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Recalling (17) and the fact that |cQ| ≤ ‖ψ̂k‖∞ ≤ 3, it follows from (18), (19) and (20) that
there is some constant C > 0 not depending on φk such that

|φk(x̄) − φk(ȳ)| ≤ Cβs̄(x̄,ȳ).

Actually, we may take C = 3‖ρ̄‖∞(Cρ̄ + CF̄ ). �

4.2 Central Limit Theorem

Let ϕ ∈ Hη and consider its lift to � defined as ϕ̃ = ϕ ◦ π . Similarly to what we have done
at the beginning of Sect. 4.1, we easily see that for proving Theorem C it is enough to obtain
the Central Limit Theorem for ϕ̃ with respect to ν on �. As in the study of the correlations
decay, the proof uses results from the quotient dynamics F̄ : �̄ → �̄. Let B̄ be the Borel
σ -algebra on �̄. Define

B0 = {π̄−1Ā : Ā ∈ B̄} and ϕ̄0 = Eν(ϕ̃ | B0).

Putting together the information from [10, Sect. 5.1.B] and Claim 1 in [10, Sect. 5.2] we
easily see that it is enough to show that

∑

j≥0

∫

|P j (ϕ̄0ρ̄)|dm̄ < ∞,

where P is the transfer operator associated to (F̄ , ν̄). The proof of the Sublemma in [10,
Sect. 5.2] gives that ϕ̄0 ∈ Fβ . Thus, if we consider λ̄ the measure whose density with respect
to m̄ is ϕ̄0ρ̄, then P j (ϕ̄0ρ̄) is by definition the density of F

j
∗ λ̄ with respect to m̄. Hence, we

just have to show that

∑

j≥0

∫ ∣
∣
∣
∣

d

dm̄
F̄ j

∗ λ̄

∣
∣
∣
∣
dm̄ < ∞.

First we “renormalize” λ̄. Let

b =
(∫

(ϕ̄0 + ‖ϕ̄0‖∞)dν̄

)−1

and ϕ̂0 = b(ϕ̄0 + 2‖ϕ̄0‖∞),

and consider λ̂ the probability measure whose density with respect to m̄ is ϕ̂0ρ̄. We have

∫

ϕ̂0d̄ ν̄ =
∫

ϕ̂0ρ̄dm̄ = 1. (21)

Recalling that
∫

ϕ̄0d̄ ν̄ =
∫

ϕ̄0ρ̄dm̄ = 0,

we may write

∫ ∣
∣
∣
∣

d

dm̄
F̄ j

∗ λ̄

∣
∣
∣
∣
dm̄ =

∫ ∣
∣
∣
∣

d

dm̄
F̄ j

∗ λ̄ − ρ̄

∫

ϕ̄0dν̄

∣
∣
∣
∣
dm̄.
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Using (21) and the fact that

d

dm̄
F̄∗ν̄ = d

dm̄
ν̄ = ρ̄,

we obtain
∫ ∣

∣
∣
∣

d

dm̄
F̄ j

∗ λ̄

∣
∣
∣
∣
dm̄ = 1

b

∫ ∣
∣
∣
∣

d

dm̄
F̄ j

∗ λ̂ − 2ρ̄‖ϕ̄0‖∞ − ρ̄

∫

ϕ̂0dν̄ + 2ρ̄‖ϕ̄0‖∞

∣
∣
∣
∣
dm̄

= 1

b

∫ ∣
∣
∣
∣

d

dm̄
F̄ j

∗ λ̂ − ρ̄

∣
∣
∣
∣
dm̄

= 1

b
|F̄ j

∗ λ̂ − ν̄|.

Under the hypotheses of Theorem C this last quantity is clearly summable, by Theorem 3.6.

5 A Solenoid with Intermittency

Here we construct a hyperbolic structure for the map g defined in Sect. 2.4 which satisfies
the assumptions of our main theorems. Concerning (P1)–(P4), we just have to show that (P1)
and (P4) hold, since (P2) and (P3) are trivially satisfied due to the uniform contraction of g in
the vertical direction and the skew-product form of g. We also need to give suitable estimates
for the decay of return times and the diameters in (2). The conclusions of Theorem D are
then a consequence of our main results.

The map g possesses an attractor in M which is precisely

� =
⋂

n≥0

gn(M).

� is locally a product of an interval by a Cantor set. Topologically this set coincides with
the solenoid attractor for the classical case where f is taken uniformly expanding in S1.

For defining the hyperbolic structure we are going to construct a (mod 0) countable par-
tition P0 of an interval I1 ⊂ S1 and associate to each element of P0 a suitable return time R∗
with respect to the map f . Then we take

� = � ∩ (I1 × D2).

For each (x, y) ∈ � we define γ s(x, y) = {(x, y) : y ∈ D2} and γ u(x, y) as the connected
component of � that contains (x, y). The s-subsets are precisely the sets � ∩ (P ×D2) with
P ∈ P0 and the return times are taken accordingly.

5.1 Partition and Return Times

Here we recall some objects and results from [11, Sect. 6] related to the map f . Let I1, . . . , Id

be the partition of S1 made by the fundamental domains of f arranged in a natural order,
and assume for definiteness that 0 is the common endpoint of I1 and Id . Letting x0 be the
other endpoint of I1 we define a sequence (xn)n in I1 with the property that f (xn+1) = xn

for n ≥ 0. Likewise, we consider x ′
0 the endpoint of Id distinct from 0 and define a sequence

(x ′
n)n in Id so that f (x ′

n+1) = x ′
n for n ≥ 0.
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Let Jn = [xn+1, xn] and J ′
n = [x ′

n, x
′
n+1] for n ≥ 0. Consider the (mod 0) partition of S1

A = {I2, . . . , Id−1} ∪ {Jn, J
′
n; n ≥ 0}.

Let R = 1 on I2 ∪ · · · ∪ Id−1 ∪ J0 ∪ J ′
0 and let R|Jn = R|J ′

n = n + 1 for n ≥ 1. We have
f R(Ij ) = S1 for 2 ≤ j ≤ d − 1 and the f R images of all other elements of A are either
I1 ∪· · ·∪ Id−1 or I2 ∪· · ·∪ Id . The following results were proved in [11, Sects. 6.2 and 6.3]:

(1) Tail decay: Leb{R > n} ≈ n−1/γ ;
(2) Expansion: there is 0 < β < 1 such that (f R)′(x) ≥ β−1 for every x ∈ S1 \ {0};
(3) Bounded distortion: there is C > 0 such that for every 1 ≤ i ≤ n and x, y ∈ Jn

log
(f i)′(x)

(f i)′(y)
≤ C

|f i(x) − f i(y)|
|Jn−i | .

This function R does not qualify as a return time for a hyperbolic structure of f satisfying
the Markov property. That role will be played by the function R∗ we introduce below. We
use the time function R to define a sequence of stopping times (Si)i as in (1). We also define
the sequence of return times

r1 = S1 = R, and ri+1 = Si+1 − Si, for i ≥ 1.

Using this sequence of stopping times we define the first return time R∗ to I1 as follows. We
simply take R∗(x) = Si(x), where i ≥ 1 is the minimum such that f Si (x) ∈ I1. As shown in
[11, Sect. 6.2] we have

Leb{R∗ > n} � n−1/γ . (22)

Let P0 be the Markov partition of I1 associated to R∗. Naturally associating the return
times to the s-subsets described above, then (22) gives the tail estimate that we need. Prop-
erty (P4) is an easy consequence of the bounded distortion and expansion above, since the
estimates on the derivative of g in the unstable direction are given by f .

5.2 Diameter Estimate

Now we are going to show that δk � 1/k1/γ , where δk is the quantity defined in (2). Taking
into account the uniform contraction on the stable direction, we just have to obtain the
desired control on the unstable one. We start by proving the following auxiliary result.

Lemma 5.1 Let X be an interval in S1 whose points have the same stopping times
S1, . . . , SN , for some N ≥ 1, with SN ≥ k, and such that f SN (X) = I1. Then |X| � 1/k1/γ .

Proof Let r1, . . . , rN be the return times of points in X. Since we are assuming that SN =
r1 + · · · + rN ≥ k, there must be some 1 ≤ m ≤ N such that rm ≥ k/N . Let

Y = f r1+···+rm−1(X).

Considering the interval I ∈ A such that Y ⊂ I we have R|I = rm. Bounded distortion yields

|Y | � |f rm(Y )|
|f rm(I )| · |I |.
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On the other hand, the tail decay and expansion estimates give

|I | �
(

1

rm

)1/γ

, |X| ≤ βm−1|Y | and |f rm(Y )| ≤ βN−m|I1|.

Taking into account the choice of m we obtain

|X| � βN

(
N

k

)1/γ

� 1

k1/γ
,

and so we are done. �

Take P ∈ P0 and k ≥ 1. We consider the three possible cases of sets whose diameters
have to be controlled. The first two correspond to k ≤ R∗(P ) − 1, and the last one corre-
sponds to k > R∗(P ) − 1; recall the definition of δk in Sect. 2.2.

Case 1 Assume first that k ≤ R∗(P ) − 1 and 0 ≤ � < R∗(P ) − k. There is m ≥ 1 such that
R∗(P ) = r1 + · · · + rm. Considering r0 = 0, let 0 ≤ p < m be such that

r0 + · · · + rp ≤ � < r0 + · · · + rp+1.

Letting �′ = � − (r0 + · · · + rp), we have

�′ < rp+1 and �′ < rp+1 + · · · + rm − k.

Now, if i + 1 = m, then

|f �(P )| = |f �′
(f r0+···+rp (P ))| �

(
1

rm − �′

)1/γ

≤ 1

k1/γ
.

Otherwise, for p + 1 < m we use Lemma 5.1 with X = f r0+···+rp+�′
(P ), N = m − p, and

Sj = rp+1 + · · · + rp+j − �′, for 1 ≤ j ≤ N,

thus obtaining

|f �(P )| = |X| � 1

k1/γ
.

Observe that rp+1 − �′ is still a return time, which then implies that S1 is well defined.

Case 2. Assume now that k ≤ R∗(P )− 1 and R∗(P )− k ≤ � ≤ R∗(P )− 1. We simply write
R∗ for R∗(P ). Take Q ∈ Pk−R∗+1+� with Q ⊂ P . By construction, there is j ≥ 0 such that
points in f R∗

(Q) have the same stopping times S∗
1 , . . . , S∗

j up to time k −R∗ + �. Moreover,

f
S∗
j+1(f R∗

(Q)) = I1 and

S∗
j+1 ≥ k − R∗ + 1 + �. (23)

There are integers m,n ≥ 1 and return times r1, . . . , rm+n such that

R∗ = r1 + · · · + rm and S∗
j+1 = rm+1 + · · · + rm+n. (24)

It follows from (23) and (24) that

� < r1 + · · · + rm+n − k.
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Considering 0 ≤ p < m such that

r0 + · · · + rp ≤ � < r0 + · · · + rp+1,

where r0 = 0 as before, and taking �′ = � − (r0 + · · · + rp), we have

�′ < rp+1 and �′ < rp+1 + · · · + rm+n − k.

The proof now follows as in the previous case.

Case 3. The case k > R(P ) − 1 ≥ � is treated as Case 2.

Appendix A: Mixing Rates for Tower Maps

The goal of this section is to prove Theorem 3.6. We follow the scheme of [11] with a
delicate control on the constants. The only exception is Appendix A.2.2 where we use results
from [4]. The setting will be the same of Sect. 3.3. For the sake of notational simplicity we
shall drop all bars.

Let λ and λ′ be probability measures in � whose densities with respect to m belong
to F+

β . Let

ϕ = dλ

dm
and ϕ′ = dλ′

dm
,

and consider Cϕ , Cϕ′ as in the definition of F+
β .

A.1 Main Estimates

Consider the product map F × F : � × � → � × �, and P = λ × λ′ the product measure
on � × �. Let π , π ′ : � × � → � be the projections on the first and second coordinates
respectively. Note that Fn ◦ π = π ◦ (F × F)n. Consider the partition Q := {�l,i} of �, and
the partition Q×Q of �×�. Note that each element of Q×Q is sent bijectively by F ×F

onto a union of elements of Q×Q. For each n ≥ 1, let

(Q×Q)n :=
n−1
∨

i=0

(F × F)−i (Q×Q),

and let (Q×Q)n(x, x ′) be the element of (Q×Q)n that contains (x, x ′) ∈ � × �.
Since (F, ν) is mixing and the density of ν with respect to m belongs to L∞(m), we may

find n0 ∈ N and γ0 > 0 such that m(F−n(�0) ∩ �0) ≥ γ0 for all n ≥ n0. Then we introduce
a sequence of stopping times 0 ≡ τ0 < τ1 < τ2 < · · · in � × � given by

τ1(x, x ′) = n0 + R̂(F n0(x)),

τ2(x, x ′) = τ1 + n0 + R̂(F τ1(x ′)),

τ3(x, x ′) = τ2 + n0 + R̂(F τ2(x)),

τ4(x, x ′) = τ3 + n0 + R̂(F τ3(x ′)),

...
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with the falls to the ground level �0 alternating between x e x ′. This implies that
τi+1 − τi ≥ n0 for all i ≥ 1. We define the simultaneous return time T : � × � → N as

T (x, x ′) = min
{

τi : (F τi (x),F τi (x ′)) ∈ �0 × �0, with i ≥ 2
}

.

Note that we have T ≥ 2n0. Since (F, ν) is mixing, then (F × F,ν × ν) is ergodic, and so
T is well-defined m × m almost everywhere. Observe that if T (x, x ′) = n, then

T |(Q×Q)n(x,x′) ≡ n and (F × F)n((Q×Q)n(x, x ′)) = �0 × �0.

Now we define a sequence ξ1 < ξ2 < ξ3 < · · · of partitions of � × �. First we take
ξ1(x, x ′) = (F−τ1(x)+1Q)(x) × �. The partition ξ1 is formed by sets of the form � = A × �

where τ1 is constant on � and F τ1 sends A bijectively to �0. For i > 1, if i if even (resp.
odd), we define ξi as the refinement of ξi−1 obtained by partitioning � ∈ ξi−1 in the x ′

direction (resp. x direction) into sets �̃ such that τi is constant on each �̃ and F τi sends
π ′(�̃) (resp. π(�̃)) bijectively to �0. It will be useful to consider ξ0 = {� × �}. Let us
mention two useful properties about the measurability of the functions with respect to the
partitions defined above:

• τ1, τ2, . . . , τi are ξi -measurable for each i ≥ 1;
• {T = τi} and {T > τi} are ξi+1-measurable for each i ≥ 1.

This follows from the construction of the objects. Now we present the main estimates we
need on {τi} and T , whose proofs we postpone to Appendix A.3.

(E1) There is ε0 = ε0(Cϕ,Cϕ′) > 0 such that P {T = τi | �} ≥ ε0 for i ≥ 2 and � ∈ ξi with
T | � > τi−1. The dependence of ε0 on Cϕ and Cϕ′ can be removed if we consider
i ≥ i0(Cϕ,Cϕ′).

(E2) There is K0 = K0(Cϕ,Cϕ′) > 0 such that P {τi+1 − τi > n0 +n | �} ≤ K0m{R̂ > n} for
i ≥ 0, � ∈ ξi and n ≥ 0. The dependence of K0 on Cϕ and Cϕ′ can be removed if we
consider i ≥ i0(Cϕ,Cϕ′).

Let 0 ≡ T0 < T1 < T2 < · · · be stopping times in � × � given by

T1 = T , and Tn = Tn−1 + T ◦ (F × F)Tn−1 , for n ≥ 2. (25)

(E3) There are K1 = K1(Cϕ,Cϕ′) > 0 and ε1 > 0 (not depending on ϕ or ϕ′) such that
∣
∣Fn∗ λ − Fn∗ λ′∣∣ ≤ 2P {T > n} + K1

∑∞
i=1(1 − ε1)

iP {Ti ≤ n < Ti+1} for n ≥ 1.
(E4) There is K2 = K2(Cϕ,Cϕ′) > 0 such that P {Ti+1 − Ti > n} ≤ K2(m × m){T > n} for

i ≥ 0.

A.2 Convergence to the Equilibrium

We shall use (E1)–(E4) to prove Theorem 3.6. Let ν be the measure given by Theorem 3.5.
Observe that ν is a fixed point for F∗, whose density with respect to m belongs to F+

β . The-
orem 3.6 follows just by taking λ′ = ν, once we obtain the upper bound for

∣
∣Fn∗ λ − Fn∗ λ′∣∣.

We start by observing that for each i ≥ 1 we have

P {Ti ≤ n < Ti+1} ≤
i

∑

j=0

P

{

Tj+1 − Tj >
n

i + 1

}

. (26)
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Actually, since we have Ti+1 > n, there must be some 0 ≤ j ≤ i with Tj+1 −Tj > n/(i + 1).
For otherwise

Ti+1 =
i

∑

j=0

(Tj+1 − Tj ) ≤
i

∑

j=0

n

i + 1
= n,

which is an absurd. Hence

{Ti ≤ n < Ti+1} ⊂
i

⋃

j=0

{

Tj+1 − Tj >
n

i + 1

}

,

which gives (26). It follows respectively from (E3), (26) and (E4) that

∣
∣Fn

∗ λ − Fn
∗ λ′∣∣ ≤ 2P {T > n} + K1

∞
∑

i=1

(1 − ε1)
iP {Ti ≤ n < Ti+1} ,

≤ 2P {T > n} + K1

∞
∑

i=1

(1 − ε1)
i

i
∑

j=0

P

{

Tj+1 − Tj >
n

i + 1

}

,

≤ 2P {T > n} + K1K2

∞
∑

i=1

(1 − ε1)
i(i + 1)(m × m)

{

T >
n

i + 1

}

.

Observe that both in the polynomial and stretched exponential cases, as long we obtain the
desired decay for P {T > n}, then taking P = m × m it immediately follows that

∞
∑

i=1

(1 − ε1)
i(i + 1)(m × m)

{

T >
n

i + 1

}

decays at the same speed of P {T > n}. Consequently, we are left to estimate P {T > n}. At
this point we distinguish the polynomial and stretched exponential cases.

A.2.1 Polynomial Decay

Assume there are C > 0 and α > 1 such that m{R > n} ≤ Cn−α for all n ≥ 1. Then, there is
Ĉ > 0 (depending only on C and α) such that

m{R̂ > n} =
∑

l>n

m{R > l} ≤ Ĉn−α+1. (27)

Recall that T ≥ 2n0 by construction. We write

P {T > n} =
∑

1≤i<[ n
2n0

]
P {T > n : τi ≤ n < τi+1} + P {T > n : τ[ n

2n0
] ≤ n}. (28)

Since {T > τi−1} is ξi -measurable, conditioning on the elements of the partition ξi and using
(E1) it yields for i ≥ 2

P {T > τi | T > τi−1} = 1 − P {T = τi | T > τi−1} ≥ 1 − ε0. (29)
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From (29) we obtain for n ≥ 4n0

P {T > n : τ[ n
2n0

] ≤ n} ≤ P {T > τ[ n
2n0

]}

= P {T > τ1} ·
[ n

2n0
]

∏

i=2

P {T > τi | T > τi−1}

≤ (1 − ε0)
[ n

2n0
]−1

. (30)

Since the dependence of ε0 on P can be removed if we consider i ≥ i0 for some i0 = i0(P ),
we are left to compute the decay of

∑

1≤i<[ n
2n0

]
P {T > n : τi ≤ n < τi+1}. (31)

For each i ≥ 1 we have P {T > n : τi ≤ n < τi+1} ≤ P {T > τi : n < τi+1}. As in (26) we
may show that

{T > τi : n < τi+1} ⊂
i

⋃

j=0

{

T > τi : τj+1 − τj >
n

i + 1

}

,

which then gives

P {T > n : τi ≤ n < τi+1} ≤
i

∑

j=0

P

{

T > τi : τj+1 − τj >
n

i + 1

}

. (32)

Our next goal is to estimate the terms in the sum (32). Consider first the terms with
i, j ≥ 2. We write

P

{

T > τi : τj+1 − τj >
n

i + 1

}

= A · B · C, (33)

with

A = P {T > τ1} ·
j−1
∏

k=2

P {T > τk | T > τk−1}

B = P

{

T > τj : τj+1 − τj >
n

i + 1
| T > τj−1

}

;

C =
i

∏

k=j+1

P

{

T > τk | T > τk−1 : τj+1 − τj >
n

i + 1

}

.

Observe that A = P {T > τ1} when j = 2, and C is void when j = i. Arguing as in (29),
from estimate (E1) one gets

A ≤ (1 − ε0)
j−2. (34)

Conditioning on ξk and using (E1), we have that each term in C is also bounded from above
by 1 − ε0, which then gives

C ≤ (1 − ε0)
i−j . (35)
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Since {T > τi−1} is ξi -measurable, conditioning on elements of ξi and using (E2) we get

B ≤ P

{

τj+1 − τj >
n

i + 1
| T > τj−1

}

≤ K0m

{

R̂ >
n

i + 1
− n0

}

. (36)

Using (27) and the fact that i < [ n
2n0

] we obtain

B ≤ K0Ĉ

(
n

i + 1
− n0

)−α+1

≤ K0Ĉ21−α

(
n

i + 1

)−α+1

.

From (33)–(36) we deduce for i, j ≥ 2

P

{

T > τi : τj+1 − τj >
n

i + 1

}

≤ K0Ĉ21−α

(
n

i + 1

)−α+1

(1 − ε0)
i−2. (37)

Let us consider now the small terms in the sum (32). For i ≥ 2 and j = 0,1 we write

P

{

T > τi : τj+1 − τj >
n

i + 1

}

≤ P

{

T > τ1 : τj+1 − τj >
n

i + 1

}

×
i

∏

k=2

P

{

T > τk | T > τk−1 : τj+1 − τj >
n

i + 1

}

≤ P

{

τj+1 − τj >
n

i + 1

}

·
i

∏

k=2

P

{

T > τk | T > τk−1 : τj+1 − τj >
n

i + 1

}

.

We treat this case arguing as before, thus obtaining

P

{

T > τi : τj+1 − τj >
n

i + 1

}

≤ K0Ĉ21−α

(
n

i + 1

)−α+1

(1 − ε0)
i−1. (38)

Finally, for i = 1 and j = 0,1, we have

P

{

T > τ1 : τj+1 − τj >
n

i + 1

}

≤ P

{

τj+1 − τj >
n

i + 1

}

≤ K0Ĉ21−α

(
n

i + 1

)−α+1

.

(39)
Using (32) and (37)–(39) we get P {T > n : τi ≤ n < τi+1} ≤ C0(1 − ε0)

i(i + 1)αn−α+1,

where C0 is a constant depending only on K0, Ĉ, α and ε0. This yields the desired bound
for (31) in the polynomial case.

A.2.2 Stretched Exponential Decay

Assume that there are C,c > 0 and 0 < η ≤ 1 such that Leb{R > n} ≤ Ce−cnη
for all n ≥ 1.

Then there is Ĉ > 0 such that

m{R̂ > n} =
∑

l>n

m{R > l} ≤ Ĉe−cnη

.

The conclusion in this case is a consequence of (E1)–(E2) and the next lemma, which can
easily be obtained from [4, Lemma 4.2] by taking L = 1, τ = T , μ = P and tj = τj .
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Lemma A.1 Assume that there are ε0 > 0 and K0 > 0 such that for all i ≥ 2 and � ∈ ξi

with T | � > τi−1 we have

(1) P {T = τi | �} ≥ ε0;
(2) P {τi+1 − τi > n | �} ≤ K0e

−cnη
.

Then there exist C ′, c′ > 0 such that P {T > n} ≤ C ′e−c′nη
.

For the sake of completeness one must verify that the constants C ′ and c′ obey the final
requirement of Theorem 3.6. Actually, it is proved in [4, Lemma 4.2] that there are a mea-
surable function k and a measurable set Bn such that for q(n) = [αnη], with small α > 0,
we have {T > n} ⊂ {k > q(n)} ∪ Bn (recall estimate (27) in [4]) with P {k > q(n)} ≤
(1 − ε0)

q(n), and for some positive integer K only depending on K0 and η,

P (Bn) ≤ 2q(n)
∑

p≥n/2

Ce−cpη

, for n ≥ K .

Hence, taking α > 0 sufficiently small we obtain the desired conclusion.

A.3 Main Estimates

Here we obtain estimates (E1)–(E4). We start with some preliminary results on distortion
control that will enable us to prove (E1) and (E2).

Lemma A.2 There is C0 = C0(Cϕ) > 0 such that for every k ≥ 1 and A ∈ ∨k−1
i=0 F−iQ with

Fk(A) = �0, we have for μ = Fk∗ (λ|A) and all x, y ∈ �0

∣
∣
∣
∣

dμ

dm
(x)

/ dμ

dm
(y)

∣
∣
∣
∣
≤ C0.

Moreover, the dependence of C0 on Cϕ can be removed if we assume that the number of
visits j ≤ k of A to �0 is bigger than some j0 = j0(Cϕ).

Proof Let x0, y0 ∈ A be such that Fk(x0) = x and Fk(y0) = y. Using (12) and the fact that
ϕ ∈ Fβ we have

∣
∣
∣
∣

dμ

dm
(x)

/ dμ

dm
(y)

∣
∣
∣
∣
=

∣
∣
∣
∣

ϕ(x0)

JF k(x0)
· JF k(y0)

ϕ(y0)

∣
∣
∣
∣
≤ ϕ(x0)

ϕ(y0)
·
∣
∣
∣
∣

JF k(y0)

JF k(x0)

∣
∣
∣
∣
≤ (1 + Cϕβ

j )(1 + CF ),

where j is the number of visits of A to �0 prior to k. �

The next result is proved in [11, Sublemma 1].

Lemma A.3 There is M0 > 0 such that dFn∗ m

dm
≤ M0 for all n ≥ 1.

A.3.1 Proof of (E1)

Assume without loss of generality that i is even, and take � ∈ ξi as in the statement of (E1).
We have � = A×B with A,B ⊂ �, where A is sent bijectively by F τi−1 to �0 and F τi−1(B)

is contained in some �l,j . At time τi we have F τi (B) = �0 and F τi (A) is spread over several
parts of

⋃{�l : l ≤ τi − τi−1}. The set {T = τi} ∩ � has the form A′ × B where A′ is the
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set of points in A which are sent to �0 by F τi−1 and return to �0 by F τi−τi−1 . Letting
μ = F

τi−1∗ (λ|A) we may write

P {T = τi | �} = λ(A′)
λ(A)

= μ(F−(τi−τi−1)(�0) ∩ �0)

μ(�0)
.

Note that Lemma A.2 applies to μ, thus giving

P {T = τi | �} ≥ C−2
0

m(F−(τi−τi−1)(�0) ∩ �0)

m(�0)
.

Recall that n0 has been chosen in such a way that there is γ0 such that m(F−n(�0) ∩ �0) ≥
γ0 > 0, for all n ≥ n0. By construction we have τi −τi−1 ≥ n0. This is enough for concluding
that there is some ε0 = ε0(Cϕ) > 0 for which P {T = τi | �} ≥ ε0. The other case (i odd)
gives the dependence of ε0 also on Cϕ′ . These dependencies can be removed if we take i

large enough, according to Lemma A.2.

A.3.2 Proof of (E2)

For i = 0 we have

P {τ1 > n0 + n} = (F n0∗ λ){R̂ > n} ≤
∥
∥
∥
∥

dλ

dm

∥
∥
∥
∥

∞
M0m{R̂ > n},

and for i = 1

P {τ2 − τ1 > n0 + n} = (

F τ1+n0∗ λ′){R̂ > n} ≤
∥
∥
∥
∥

dλ′

dm

∥
∥
∥
∥

∞
M0m{R̂ > n},

which obviously give upper bounds depending on Cϕ and Cϕ′ .
Let us consider now the case i ≥ 2. Assume for definiteness that i is even. Considering

the probability measure

μ = 1

P (�)
F

τi−1∗ π∗(P |�)

we have

P {τi+1 − τi > n0 + n | �} = (

F
(τi−τi−1)+n0∗ μ

){R̂ > n}

≤
∥
∥
∥
∥

d

dm

(

F
(τi−τi−1)+n0∗ μ

)
∥
∥
∥
∥

∞
m{R̂ > n}

≤ M0

∥
∥
∥
∥

dμ

dm

∥
∥
∥
∥∞

m{R̂ > n}, by Lemma A.3.

Using Lemma A.2 one has that ‖dμ/dm‖∞ is bounded from above by some constant only
depending on C0. Moreover, according to Lemma A.2, this dependency can be removed if
we take i large enough.

For obtaining (E3) and (E4) we consider the dynamical system F̂ = (F ×F)T : �×� �.
It follows from the definition of the sequence {Tn} in (25) that

F̂ n = (F × F)Tn , for all n ≥ 1. (40)
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Let ξ̂1 denote the partition into rectangles �̂ of � × � on which T is constant and F̂ n

maps �̂ bijectively to �0 × �0. Next we define inductively partitions ξ̂2, ξ̂3, . . . of � × �

by ξ̂n := F̂−(n−1)ξ̂1, for n ≥ 2. Each ξ̂n is the partition into subsets �̂ of � × � on which
Tn is constant and F̂ maps �̂ bijectively to �0 × �0. We consider the reference measure
m × m for the dynamical system F̂ and J F̂ the Jacobian of F̂ with respect to m × m. We
define a separation time ŝ : (� × �) × (� × �) → N0 for F̂ in the following way: given
w,z ∈ � × �, take

ŝ(w, z) = min
{

n ≥ 0 : F̂ nw and F̂ nz lie in distinct elements of ξ̂1

}

.

Denoting

� = dP

d(m × m)
,

we have �(x,x ′) = ϕ(x)ϕ′(x ′). With no loss of generality we assume from here on that
ϕ(x) > 0 and ϕ(y) > 0. The next two results are proved in [11, Sublemma 3].

Lemma A.4 Let C1 > 0 be as in Lemma 3.4. Given w,z ∈ � × � with ŝ(w, z) ≥ n ≥ 1

log
J F̂ n(w)

J F̂ n(z)
≤ 2C1β

ŝ(F̂ n(w),F̂ n(z)).

Lemma A.5 Let C� = Cϕ + Cϕ′ . Given w,z ∈ � × �

log
�(w)

�(z)
≤ C�βŝ(w,z).

The next result gives a distortion control similar to that of Lemma A.2.

Lemma A.6 There is C∗ = C∗(Cϕ,Cϕ′) > 0 such that for any i ≥ 1 and any � ∈ ξ̂i , we have
for all x, y ∈ �0 × �0 and Q = F̂ i∗(P |�)

∣
∣
∣
∣

dQ

dm
(x)

/dQ

dm
(y)

∣
∣
∣
∣
≤ C∗.

Proof Let x0, y0 ∈ � be such that F̂ i(x0) = x and F̂ i(y0) = y. Recall that ŝ(x0, y0) ≥ i.
Using Lemma A.5 and Lemma A.4 we obtain

∣
∣
∣
∣

dQ

dm
(x)

/dQ

dm
(y)

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

�(x0)

J F̂ i(x0)
· J F̂ i(y0)

�(y0)

∣
∣
∣
∣
∣
≤ �(x0)

�(y0)
·
∣
∣
∣
∣
∣

J F̂ i(y0)

J F̂ i(x0)

∣
∣
∣
∣
∣
≤ exp(C� + 2C1).

We just have to take C∗ = exp(Cϕ + Cϕ′ + 2C1). �

Now we are going to define a sequence of densities �̂0 ≥ �̂1 ≥ �̂2 ≥ · · · in � × � with
the property that for all i ≥ 0 and all �̂ ∈ ξ̂i

π∗F̂ i
∗
(

(�̂i−1 − �̂i)((m × m)|�̂)
) = π ′

∗F̂
i
∗
(

(�̂i−1 − �̂i)((m × m)|�̂)
)

. (41)
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Let ε = ε(F ) > 0 be a small number to be determined later (see Lemma A.7 below). Let
i1 = i1(�) be such that

C�βi1 < CF̂ . (42)

For i < i1, we take �̂ ≡ �. For i ≥ i1, let

�̂i(z) =
[

�̂i−1(z)

J F̂ i(z)
− ε min

w∈ξ̂i (z)

�̂i−1(w)

J F̂ i(w)

]

J F̂ i(z), (43)

where ξ̂i (z) is the element of �̂ of ξ̂i that contains z. One can easily see that the sequence
{�̂i} satisfies condition (41). The next result is proved in [11, Lemma 3]. As observed in
[11, p. 166], ε depends only on β .

Lemma A.7 If ε > 0 is sufficiently small, then there is 0 < ε1 < 1 (not depending on �)
such that �̂i ≤ (1 − ε1)�̂i−1 for all i ≥ i1.

A.3.3 Proof of (E3)

Let ε1 > 0 be as in Lemma A.7. Let �0,�1,�2, . . . be defined in the following way: given
n ≥ 0 and z ∈ � × �, let

�n(z) = �̂i(z) for Ti(z) ≤ n < Ti+1(z). (44)

We claim that
∣
∣Fn

∗ λ − Fn
∗ λ′∣∣ ≤ 2

∫

�nd(m × m) for all n ≥ 1. (45)

Actually, taking � = �n +
n

∑

k=1

(�k−1 − �k) we have

∣
∣Fn

∗ λ − Fn
∗ λ′∣∣ = ∣

∣π∗(F × F)n
∗(�(m × m)) − π ′

∗(F × F)n
∗(�(m × m))

∣
∣

≤ ∣
∣π∗(F × F)n

∗(�n(m × m)) − π ′
∗(F × F)n

∗(�n(m × m))
∣
∣

+
n

∑

k=1

∣
∣(π − π ′)∗

[

(F × F)n
∗((�k−1 − �k)(m × m))

]∣
∣ .

For the first term in the last sum we have

∣
∣π∗(F × F)n

∗(�(m × m)) − π ′
∗(F × F)n

∗(�(m × m))
∣
∣ ≤ 2

∫

�nd(m × m).

Let us see that all the other terms vanish. Define Ak,i = {z ∈ � × � : k = Ti(z)} and Ak =
⋃

Ak,i . Each Ak,i is a union of elements of � ∈ ξ̂i and Ak,i �= Ak,j for i �= j . By (44) we
have �k−1 − �k = �̂i−1 − �̂i on � ∈ ξ̂i |Ak,i , and �k = �k−1 on � × � − Ak . For k ≥ 1

π∗(F × F)n
∗((�k−1 − �k)(m × m))

=
∑

i

∑

�⊂Ak,i

F n−k
∗ π∗(F × F)Ti∗ ((�̂i−1 − �̂i)(m × m)|�)
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=
∑

i

∑

�⊂Ak,i

F n−k
∗ π ′

∗(F × F)Ti∗ ((�̂i−1 − �̂i)(m × m)|�) by (41)

= π ′
∗(F × F)n

∗((�k−1 − �k)(m × m)).

This completes the proof of (45). To finish (E3) we write

∫

�nd(m × m) =
∫

{Ti1 >n}
�nd(m × m) +

∞
∑

i=i1

∫

{Ti≤n<Ti+1}
�nd(m × m).

Observe that
∫

{Ti1 >n}
�nd(m × m) =

∫

{Ti1 >n}
�d(m × m) = P {Ti1 > n},

while for i ≥ ii ,

∫

{Ti≤n<Ti+1}
�nd(m × m) =

∫

{Ti≤n<Ti+1}
�̂id(m × m)

≤
∫

{Ti≤n<Ti+1}
(1 − ε1)

i−i1+1�d(m × m)

= (1 − ε1)
i−i1+1P {Ti ≤ n < Ti+1}.

Hence

∣
∣Fn

∗ λ − Fn
∗ λ′∣∣ ≤ 2P {Ti1 > n} + 2

∞
∑

i=i1

(1 − ε1)
i−i1+1P {Ti ≤ n < Ti+1}

≤ 2P {Ti1 > n} + 2(1 − ε1)
−i1+1

∞
∑

i=i1

(1 − ε1)
iP {Ti ≤ n < Ti+1}. (46)

We may write

P {Ti1 > n} = P {T > n} + (1 − ε1)
−i1+1

i1−1
∑

i=1

(1 − ε1)
i1−1P {Ti ≤ n < Ti+1}

≤ P {T > n} + (1 − ε1)
−i1+1

i1−1
∑

i=1

(1 − ε1)
iP {Ti ≤ n < Ti+1},

which together with (46) yields

∣
∣Fn

∗ λ − Fn
∗ λ′∣∣ ≤ 2P {T > n} + K1

∞
∑

i=1

(1 − ε1)
iP {Ti ≤ n < Ti+1},

with K1 depending only on ε1 and i1. From (42) and Lemma A.7 one easily obtains the
desired dependence of K1 on ϕ and ϕ′.
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A.3.4 Proof of (E4)

This estimate is obviously true for i = 0. Take an arbitrary i ≥ 1 and � ∈ ξ̂i . Recall that F̂ i

maps �̂ bijectively to �0 ×�0. Letting Q = F i∗(P |�) and observing that from (25) and (40)
we have Ti+1 − Ti = T ◦ F̂ i , we may write

P {Ti+1 − Ti > n | �} = Q{T > n}
Q(�0 × �0)

.

Using Lemma A.6,

P {Ti+1 − Ti > n | �} ≤ C2
∗

(m × m){T > n}
(m × m)(�0 × �0)

.

From this last inequality one easily obtains (E4) with K2 = C2∗/(m × m)(�0 × �0).
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